• Welcome to your

    Moodle

    Now, you are in control!

    Moodle is an open-source Learning Management System (LMS) that provides educators with the tools and features to create and manage online courses. It allows educators to organize course materials, create quizzes and assignments, host discussion forums, and track student progress. Moodle is highly flexible and can be customized to meet the specific needs of different institutions and learning environments.

    Moodle supports both synchronous and asynchronous learning environments, enabling educators to host live webinars, video conferences, and chat sessions, as well as providing a variety of tools that support self-paced learning, including videos, interactive quizzes, and discussion forums. The platform also integrates with other tools and systems, such as Google Apps and plagiarism detection software, to provide a seamless learning experience.

    Moodle is widely used in educational institutions, including universities, K-12 schools, and corporate training programs. It is well-suited to online and blended learning environments and distance education programs. Additionally, Moodle's accessibility features make it a popular choice for learners with disabilities, ensuring that courses are inclusive and accessible to all learners.

    The Moodle community is an active group of users, developers, and educators who contribute to the platform's development and improvement. The community provides support, resources, and documentation for users, as well as a forum for sharing ideas and best practices. Moodle releases regular updates and improvements, ensuring that the platform remains up-to-date with the latest technologies and best practices.

    Links of interest:

    (You can edit or remove this text)

Available courses

Course core team: This course if for all the UG and PG life sciences students.

Syllabus :

Total marks : 25 M

It is the basic life process occurs in each and every cell in all the living organisms. DNA replication is probably one of the most amazing tricks that DNA does. If you think about it, each cell contains all of the DNA you need to make the other cells. And we start out from a single cell and we end up with trillions of cells. And during that process of cell division, all of the information in a cell has to be copied, and it has to be copied perfectly. And so DNA is a molecule that can be replicated to make almost perfect copies of itself. Which is all the more amazing considering that there are almost three billion base pairs of DNA to be copied. And replication uses DNA polymerases which are molecules specifically dedicated to just copying DNA. Replicating all of the DNA in a single human cell takes several hours of just pure copying time. At the end of this process, once the DNA is all replicated, the cell actually has twice the amount of DNA that it needs, and the cell can then divide and parcel this DNA into the daughter cell, so that the daughter cell and the parental cell in many case are absolutely genetically identical.



The DNA Replication course provides a concise overview of the fundamental processes involved in DNA replication. It covers the enzymatic machinery, replication forks, and the sequence of events that occur during replication. Topics include DNA polymerases, leading and lagging strands, Okazaki fragments, proofreading mechanisms, and the role of replication origins. The course aims to provide a solid foundation in understanding how DNA is faithfully duplicated in cells, a crucial process for cell division and inheritance of genetic information.

Bacteria are able to respond to selective pressures and adapt to new environments by acquiring new genetic traits as a result of mutation, a modification of gene function within a bacterium, and as a result of horizontal gene transfer, the acquisition of new genes from other bacteria. Mutation occurs relatively slowly. The normal mutation rate in nature is in the range of 10-6 to 10-9 per nucleotide per bacterial generation, although when bacterial populations are under stress, they can greatly increase their mutation rate. Furthermore, most mutations are harmful to the bacterium. Horizontal gene transfer, on the other hand, enables bacteria to respond and adapt to their environment much more rapidly by acquiring large DNA sequences from another bacterium in a single transfer.

Horizontal gene transfer, also known as lateral gene transfer, is a process in which an organism transfers genetic material to another organism that is not its offspring. The ability of Bacteria and Archaea to adapt to new environments as a part of bacterial evolution most frequently results from the acquisition of new genes through horizontal gene transfer rather than by the alteration of gene functions through mutations. (It is estimated that as much as 20% of the genome of Escherichia coli originated from horizontal gene transfer.)

Horizontal gene transfer is able to cause rather large-scale changes in a bacterial genome. For example, certain bacteria contain multiple virulence genes called pathogenicity islands that are located on large, unstable regions of the bacterial genome. These pathogenicity islands can be transmitted to other bacteria by horizontal gene transfer. However, if these transferred genes provide no selective advantage to the bacteria that acquire them, they are usually lost by deletion. In this way the size of the bacterium's genome can remain approximately the same size over time.

There are three mechanisms of horizontal gene transfer in bacteria: transformation, transduction, and conjugation. The most common mechanism for horizontal gene transmission among bacteria, especially from a donor bacterial species to different recipient species, is conjugation. Although bacteria can acquire new genes through transformation and transduction, this is usually a more rare transfer among bacteria of the same species or closely related species.


Mendelian Genetics is a kind of biological inheritance that highlights the laws proposed by Gregor Mendel in 1866 and rediscovered in 1900. These laws faced a few controversies initially but when Mendel’s theories got integrated with the chromosome theory of inheritance, they soon became the heart of classical genetics. Later, Ronald Fisher combined these ideas with the theory of natural selection and forms a base for population genetics and modern evolutionary synthesis.